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Abstract. A new nonlinear scalarization specially designed for bicriteria nonconvex programming
problems is presented. The scalarization is based on generalized Lagrangian duality theory and uses
an augmented Lagrange function. The new concepts, qi-approachable points and augmented duality
gap, are introduced in order to determine the location of nondominated solutions with respect to a
duality gap as well as the connectedness of the nondominated set.
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1. Introduction

Theory and methodology of multiple objective programming (MOP) developed
over the last twenty years deals primarily with linear or nonlinear problems satis-
fying some strong convexity assumptions. Applications in the field of engineering
and management, however, may involve nonconvex objective functions defined
over a nonconvex feasible set. Tabek et al. (1979) developed a nonconvex multiple
criteria problem to model an aircraft control system; Ku Chi-Fa (1981) presented
several applications of MOP modeling to chemical and mechanical engineering;
Eschenauer et al. (1990) collected an impressive set of applied research projects
on multiple criteria design optimization. In structural design, nonconvex sets and
functions were used by Osyczka (1984) and Osyczka and Zajac (1990) to deal
with a beam problem, a metal cutting problem, a machine tool gearbox problem,
and the design of a robot spring balancing mechanism. Ashton and Atkins (1981)
discussed ratios in multicriteria formulations in financial planning, and Lee and
Wynne (1981) discussed ratios in multicriteria formulations in financial planning,
and Lee and Wynne (1981) examined a goal programming model using nonlinear
separable constraints. Recently, Kopsidas (1995) developed and studied a noncon-
vex bicriteria programming model for table olive preparations systems.
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To solve a multiple objective problem generally means to find some or all of
its efficient points and then find a ‘best’ solution among them according to the
decision maker’s preferences or overall utility. In the presence of various applica-
tions some research papers have been oriented toward generating efficient solutions
of nonconvex MOP problems. Wendell and Lee (1977) proposed a scalarization
combining the weighting method and the "-constraint method, and used classical
Lagrangian duality to show the existence of efficient points. In fact, Lagrangian
duality theory has been related to MOP by many authors. For a summary, see
Haimes and Chankong (1983). Wierzbicki’s (1980, 1986) reference point method-
ology, which gave rise to many other research directions, uses scalarizing penalty
functions with various types of norms in the objective space; some norms were
specially designed for nonconvex problems. The augmented weighted Tcheby-
cheff norm introduced by Steuer and Choo (1983) has attracted special interest
due to its ability to deal with nonconvex problems. Using this norm, Kaliszewski
(1986) obtained necessary and sufficient conditions for proper efficiency in MOP
problems. Roy and Wallenius (1988) developed an interactive method suitable for
handling nonlinear MOP problems including suggestions for nonconvex feasible
regions and nonconvex objective functions. Kostreva et al. (1992) applied the
scalarization technique of Benson (1978) and developed an approach for generat-
ing both locally and globally efficient solutions for polynomial (and thus, possibly
highly nonconvex) MOP problems. Bernau (1990) applied exact penalty functions
to determine efficient solutions. Studies on the connectedness of the efficient set
and its image in the objective space, the nondominated set, were undertaken by
Naccache (1978), Warburton (1983), Luc (1987), and very recently Hu and Sun
(1993).

Much attention has been given to bicriteria programs (BCPs) due to their fre-
quent occurrence in practice as well as their relative simplicity in comparison with
multiple criteria problems. One of the first studies on generating efficient solutions
of BCPs is due to Geoffrion (1967). Payne et al. (1975) characterized efficient
solutions by means of a scalarizing function. Benson (1979) developed a paramet-
ric procedure for generating efficient solutions of convex BCPs. His procedure was
based on the scalarization commonly referred to in the literature as the "-constraint
method and was later applied by Benson and Morin (1987) to a bicriteria nutrition
planning problem. Gearhart (1979) also examined the "-constraint scalarization,
but for nonconvex problems. Bicriteria quasi-concave problems were studied by
Schaible (1983) while bicriteria linear fractional programs were studied by Choo
and Atkins (1982), Warburton (1985), Cambini and Martein (1988), and others.
The structure of the nondominated set for BCPs ws analyzed by Martein (1988)
and recently by TenHuisen and Wiecek (1995).

Interactive algorithms for finding the best efficient solution for BCPs have also
been a subject of active studies. Among others, such algorithms were proposed by
Walker (1978), Rietveld (1980), Payne and Polak (1980), and Aksoy (1990), who
dealt with nonconvex mixed integer BCPs. Jahn and Merkel (1992), by means of

jogo401.tex; 7/08/1997; 12:42; v.5; p.2



BICRITERIA NONCONVEX PROGRAMS 227

the weighted Tchebycheff norm, developed an interactive approximation procedure
for nonconvex BCPs and applied it to a mechanical engineering problem. Jahn et
al. (1992) applied this procedure to design problems in chemical engineering, and
Jueschke et al. (1995) applied it to antenna design. The paper of Payne et al.
(1975) as well as the more recent papers of Payne (1993) and Helbig (1994) study
approximation of the nondominated set of BCPs.

The research presented in this paper is aimed at contributing to the theory
and methodology of bicriteria nonconvex programming problems. TenHuisen
and Wiecek (1992, 1994) and TenHuisen (1993) developed foundations of a
new approach for dealing specifically with nonconvex problems and for the first
time related generalized Lagrangian duality to MOP. The generalized Lagrangian
approach provides a basis for the development of new scalarization techniques
which are capable of generating efficient solutions for problems whose nondomi-
nated points are located in the duality gap or whose nondominated set is discon-
nected.

In this paper, the BCP is related to its single objective counter-part for which
two different generalized Lagrangian dual problems are developed. By making a
specific selection as to the form of the generalized function, the new concepts of
qi-approachable points and augmented duality gap are introduced. Of particular
interest is the ability of these dual problems to generate (locally) (weakly) efficient
solutions, especially those which lie in a duality gap and are, therefore, inaccessible
via other methods. The augmented duality gap helps determine the connectedness
of the nondominated set. An extensive literature review conducted by the authors
indicates that this generalized Lagrangian approach is the first method that generates
an efficient point and informs about its location with regard to the structure of the
nondominated set.

The paper is organized in the following manner. Section 2 includes problem
formulation and terminology. Approachability and its relationship with efficiency
are discussed in Section 3. Section 4 introduces a quadratic Lagrangian approach.
Building upon the methodology of Section 4, the connectedness of the nondominat-
ed set is discussed in Section 5. Section 6 contains an illustrative example. Finally,
conclusions on the results and some directions of further research are presented in
Section 7.

2. Formulations and Definitions

The BCP considered in this paper is given as

BCP: minimize ff1(x); f2(x)g
subject to x 2 X;

where each fi(x); i = 1; 2; is a real-valued continuous function defined onX � Rn

and X is compact.
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The concept of efficiency, first introduced by Pareto (1896), plays a central role
in the theory presented in this paper. Three classifications of efficient solutions of
BCP are defined here.

DEFINITION 2.1. A point x� 2 X is called an efficient solution of BCP if there is
no other x 2 X for which fi(x) � fi(x

�) for both i = 1; 2, with strict inequality
holding for at least one i.

DEFINITION 2.2. A point x� 2 X is called a weakly efficient solution of BCP if
there is no other x 2 X for which fi(x) < fi(x

�) for both i = 1; 2.

DEFINITION 2.3. A point x� 2 X is called a properly efficient solution of BCP if
for each i = 1; 2, whenever x 2 X and fi(x) � fi(x

�) it follows that for j 6= i,
i. fj(x) > fj(x

�), and
ii. there exists a scalar M > 0 such that (fi(x)� fi(x

�))=(fj(x
�)� fj(x)) �

M .

The sets of all efficient, weakly efficient, and properly efficient solutions are denoted
here by XE ;XWE , and XPE respectively.

In addition to the classes of globally efficient solutions defined above, it is also
possible to define corresponding classes of locally efficient solutions of BCP. A
point x� 2 X is said to be locally (weakly)(properly) efficient if there exists a
neighborhoodU of x� such that x� is (weakly) (properly) efficient over U \X . We
denote the sets of locally efficient, locally weakly efficient, and locally properly
efficient solutions by XLE , XLWE , and XLPE respectively.

Many of the results contained in this paper are introduced and studied in the
outcome or image space, R2. Two sets which play fundamental roles in this study
are the sets of outcomes for BCP, Y1 and Y2, which we define here as Yi :=
f(y; z) = (fj(x); fi(x)); j 6= i : x 2 Xg; i; j = 1; 2. Note that these two sets
are comprised of the images of exactly the same feasible points of BCP. However,
the coordinates of every point in Y1 are the reverse of the co-ordinates of that
same point in Y2. These different orderings of the co-ordinates of the points induce
significant differences in the subsets and functions defined and examined in this
paper.

Unless otherwise specified, the index i in the definitions and results contained
in this paper is understood to be a given, fixed value of i 2 f1; 2g corresponding
to the set Yi. Such statements are true for both values of i independently.

The image of a (locally) (weakly) (properly) efficient solution under the vector-
valued mapping (fj ; fi); i 6= j, is called a (locally) (weakly) (properly) non-
dominated solution. The sets of nondominated, weakly nondominated, properly
nondominated, locally nondominated, locally weakly nondominated, and locally
properly nondominated solutions are each subsets of Yi and are denoted here by
YiE; YiWE; YiPE ; YiLE; YiLWE , and YiLPE respectively.

jogo401.tex; 7/08/1997; 12:42; v.5; p.4



BICRITERIA NONCONVEX PROGRAMS 229

REMARK 2.1. If (y�; z�) 2 YiE , then (z�; y�) 2 YjE; j 6= i. In addition, the same
statement is true if the set YiE is replaced by any of the sets YiWE , YiPE , YiLE ,
YiLWE, or YiLPE .

Another subset of Yi which we utilize throughout this paper is the set of lower
envelope points (Martein, 1988), denoted here by Y env

i and defined in Definition
2.4. Closely related to the set Y env

i is the lower envelope function, envi(y), defined
in Definition 2.5.

DEFINITION 2.4. A point (y�; z�) 2 Yi is called a lower envelope point of Yi if
z� � z for all (y; z) 2 Yi for which y = y�.

The pre-image of a lower envelope point of Yi in the decision space is called a
pre-lower envelope point of Yi. The set of all pre-lower envelope points of Yi is
denoted by Xenv

i .

DEFINITION 2.5. Let envi(y):=minfz : (y; z) 2 Yig.
From a comparison of the above definitions it can be seen that (y; z) 2 Y env

i if and
only if envi(y) = z.

We now quote three theorems and a corollary, proven by TenHuisen and Wiecek
(1995), which present relationships between points in Xenv

i and various types of
efficient solutions of BCP. These theorems are utilized in the proofs of theorems
presented in Section 3 of this paper. The relationships presented are dependent
upon the differentiability of the function envi(y). For the duration of this paper,
env0

i(y) and env00

i (y) are used to denote the first and second derivatives of envi(y)
respectively, and env0

i(y
�) := env0

i(y)jy=y� .

THEOREM 2.1. A point x� 2 XE if and only if x� 2 Xenv
i for both i = 1; 2.

THEOREM 2.2. If x� 2 XPE and envi(y) is continuous and differentiable at
y� = fj(x

�), j 6= i, for both i = 1; 2, then x� 2 Xenv
i and env0

i(y
�) < 0 for both

i = 1; 2.

THEOREM 2.3. Let x� 2 Xenv
i for some i 2 f1; 2g. If envi(y) is continuous and

differentiable aty� := fj(x
�); j 6= i, and env0

i(y
�) < 0 and finite, thenx� 2 XLPE .

COROLLARY 2.1. Let x� 2 Xenv
i for both i = 1; 2. If envi(y) is continuous and

differentiable at y� = fj(x
�); j 6= i, and env0

i(y
�) < 0 and finite for both i = 1; 2,

then x� 2 XPE .

The new Lagrangian dual approach presented in this paper generates solutions
by means of a support function and uses the "-constraint problem introduced by
Benson and Morin (1977) and studied extensively by Haimes and Chankong (1983)
and many others. This support function, however, is not linear and was designed
to overcome the shortcomings encountered by the linear support function of the
classical Lagrangian dual approach.

We first define what it means for a function to support a set in R2.
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DEFINITION 2.6. Let (y�; z�) 2 Yi � R2. The function f(y) : R! R is said to
support the set Yi at (y�; z�) if f(y�) = z� and f(y) � z for all (y; z) 2 Yi.

Corresponding to BCP are the "-constraint problems Pi("); i = 1; 2, given as

Pi(") : minimize fi(x)
subject to fj(x) � "; j 6= i

x 2 X:

It is assumed throughout this paper that the value of " is always chosen such
that minffj(x) : x 2 Xg � " � maxffj(x) : x 2 Xg.

Note that given " we can find the value of envi(y)jy=" by solving Pi(") with
the constraint altered to be fj(x) = ".

Given Pi(") as the primal problem, the classical Lagrangian dual problem,
LDi("), is given as

LDi(") : maximize 
i(�; ")
subject to � � 0;

where
i(�; ") := minfLi(x; �; ") : x 2 Xg, andLi(x; �; ") := fi(x)+�(fj(x)�
"). This function Li(x; �; ") is referred to as the (classical) Lagrange function.

Although the "-constraint method is effective at generating efficient solutions, it
is unable to generate locally efficient solutions which are not also globally efficient.
Furthermore, if YiE is disconnected (a property naturally occurring in nonconvex
problems) thenPi(")might also be unable to generate weakly efficient solutions. Its
structure as a single objective optimization problem, however, makes it a powerful
component in the development of the solution techniques that follow.

In general, the Lagrangian dual approach is even less effective than the "-
constraint method at generating (locally) (weakly) efficient solutions. For noncon-
vex problems, it is likely that LDi(") is incapable of generating all, or even most,
of the efficient solutions. This problem cannot generate locally efficient solutions,
and it might be unable to generate all weakly efficient solutions, regardless of
whether YiWE is connected or not.

3. Approachability

In this section we introduce the concept of approachability and show how it relates
to efficiency. We begin by proving results relating the function envi(y) to the
quadratic support function qi(y) = �a(y � ")2 � b(y � ") + c, where a, b, and c
are scalars.

In the results that follow, q0i(y) denotes the derivative of qi(y), and q0i(y
�) :=

q0i(y)jy=y� . Additionally, V := fy : y� � � < y < y� + �g, with � > 0, is used to
denote a neighborhood of y�, and Di := fy = fj(x); j 6= i : x 2 Xg denotes the
domain of the function envi(y).
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LEMMA 3.1. Let qi(y) = �a(y� ")2� b(y� ")+ c. If envi(y) is continuous and
differentiable at y�, then qi(y�) = envi(y�) and q0i(y

�) = env0

i(y
�) if and only if for

any value of a, b = �2a(y�� ")� env0

i(y
�) and c = �a(y�� ")2� env0

i(y
�)(y��

") + envi(y�).
Proof. The proof is straightforward and, therefore, omitted.

LEMMA 3.2. Let (y�; z�) 2 Y env
i and qi(y) = �a(y � ")2 � b(y � ") + c, with

a > 0. If there exists a neighborhood V of y� over which envi(y) is continuous
and differentiable, and

qi(y
�) = envi(y

�); (1)

q0i(y) � env0

i(y) for all y 2 V such that y < y�; and (2)

q0i(y) � env0

i(y) for all y 2 V such that y > y�; (3)

then qi(y) � envi(y) for all y 2 V .
Proof. (by contradiction). Assume that there exists ŷ 2 V such that

qi(ŷ) > envi(ŷ): (4)

The proof is divided into cases which cover all possible orderings of the values
ŷ; y�, and �b=(2a) + " (the y-coordinate of the vertex of qi(y)).

Case 1 (�b=(2a) + " � ŷ < y�). Cauchy’s Mean-Value Theorem (Gaughan,
1975) states that there exists a value �y with ŷ < �y < y� such that [qi(y�) �
qi(ŷ)] env0

i(�y) = [envi(y�)� envi(ŷ)]q0i(�y). If (1) holds, then

[qi(y
�)� qi(ŷ)] env0

i(�y) = [qi(y
�)� envi(ŷ)]q0i(�y): (5)

Since qi(y) is a quadratic function which opens downward with the y-co-ordinate
of its vertex at �b=(za) + � and�b=(za) + � � ŷ < �y < y�,

0 = q0i(�b=(2a) + ") � q0i(ŷ) > q0i(�y) > q0i(y
�); and (6)

qi(�b=(2a) + ") � qi(ŷ) > qi(�y) > qi(y
�): (7)

From (4) and (6) it follows that

[qi(y
�)� envi(ŷ)]q

0

i(�y) < [qi(y
�)� qi(ŷ)]q

0

i(�y): (8)

Combining (5) with (8) results in

[qi(y
�)� qi(ŷ)]env0

i(�y) < [qi(y
�)� qi(ŷ)]q

0

i(�y): (9)

Inequalities (7) and (9) imply that env0

i(�y) > q0i(�y). Since �y < y�, this contradicts
inequality (2). Therefore, qi(y) � envi(y) for all y 2 V such that �b=(2a) + " �
y < y�.
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Case 2 (ŷ < �b=(2a) + " � y�). From Cauchy’s Mean-Value Theorem, there
exists a value �y with ŷ < �y < �b=(2a) + " such that

[qi(�b=(2a) + ")� qi(ŷ)]env0

i(ŷ)

= [envi(�b=(2a) + ")� envi(ŷ)]q0i(�y): (10)

From the structure of qi(y) and the fact that ŷ < �y < �b=(2a) + " � y�,

q0i(ŷ) > q0i(�y) > q0i(�b=(2a) + ") = 0 � q0i(y
�); and (11)

qi(ŷ) < qi(�y) < qi(�b=(2a) + ") � qi(y
�): (12)

From (4) and the fact that qi(�b=(2a) + ") � envi(�b=(2a) + ") (established in
case 1),

qi(�b=(2a) + ")� qi(ŷ) < envi(�b=(2a) + ")� envi(ŷ): (13)

Inequalities (12) and (13) imply that

qi(�b=(2a) + ")� qi(ŷ) > 0 and (14)

envi(�b=(2a) + ")� envi(ŷ) > 0: (15)

It follows from (10), (11), (13), (14), and (15) that env0

i(�y) > q0i(�y). Since �y < y�,
this contradicts inequality (2). Therefore, qi(y) � envi(y) for all y 2 V such that
y < �b=(2a) + " � y�.

The proofs of the three cases with�b=(2a)+" � y� < ŷ; ŷ < y� � �b=(2a)+
", and y� < ŷ � �b=(2a) + " follow closely the proof of case 1, and the proof
of the case with y� � �b=(2a) + " < ŷ is nearly identical to that of case 2. The
compilation of the six cases proves that qi(y) � envi(y) for all y 2 V .

LEMMA 3.3. Let (y�; z�) 2 Y env
i and qi(y) = �a(y � ")2 � b(y � ") + c, with

a > 0 (and finite). If there exists a neighborhood V of y� over which envi(y) is
continuous and differentiable, and

qi(y
�) = envi(y

�); (16)

q0i(y
�) = env0

i(y
�); and (17)

qi(y) � envi(y) for all y 2 V; (18)

then there exists a (finite) scalar �a > 0 such that qi(y) supports Yi at (y�; z�) for
all a � �a.

Proof. From (16) and (17), Lemma 3.1 implies that b = �2a(y��")�env0

i(y
�)

and c = �a(y� � ")2 � env0

i(y
�)(y� � ") + envi(y�). Consequently,

qi(y) = �a(y � y�)2 + env0

i(y
�)(y � y�) + envi(y�): (19)
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Since fi(x) is continuous over X and X is compact, envi(y) achieves a finite
minimum over Di. Moreover, if the value of a > 0 is increased, it follows from
(19) that qi(y) will strictly decrease for all y 6= y�. Therefore, it is possible to find
a (finite) scalar �a > 0 such that

maxfqi(y� � �); qi(y
� + �)g < minfenvi(y) : y 2 Dig: (20)

That is, for some (finite) value �a > 0 the value of qi(y) at each endpoint of
the interval defining V is less than the minimum value of envi(y) over its entire
domain. Also, (19) implies that

qi(y) < qi(y
� � �) for all y < y� � �; and (21)

qi(y) < qi(y
� + �) for all y > y� + �; (22)

where � > 0. From (18), (20), (21), and (22) it follows that there exists a (finite)
scalar �a > 0 such that qi(y) � envi(y) for all y 2 Di and a � �a. Combining this
with (16) completes the proof.

COROLLARY 3.1. Let (y�; z�) 2 Y env
i and qi(y) = �a(y � ")2 � b(y � ") + c,

with a > 0 (and finite). If there exists a neighborhood V of y� over which envi(y)
is continuous and differentiable, and

qi(y
�) = envi(y

�); (23)

q0i(y) � env0

i(y) for all y 2 V such that y < y�, and (24)

q0i(y) � env0

i(y) for all y 2 V such that y > y�; (25)

then there exists a (finite) scalar �a > 0 such that qi(y) supports Yi at (y�; z�) for
all a � �a.

Proof. From (23), (24), and (25), Lemma 3.2 implies that

qi(y) � envi(y) for all y 2 V : (26)

Inequalities (24), (25), and the fact that envi(y) is differentiable over V imply that

q0i(y
�) = env0

i(y
�): (27)

Applying (23), (26), and (27) to Lemma 3.3 completes the proof.

We now introduce the concept of approachability. The relationship which approach-
ability has with lower envelope points and nondominated solutions of BCP (and
the pre-images of such points in the decision space) is presented in the theorems
that follow in this section.
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DEFINITION 3.1. A point x� 2 X is called qi-approachable if there exists a
quadratic function of the form qi(y) = �a(y�")2�b(y�")+c, with a > 0, which
supports the setYi at the point (y�; z�), where z� := fi(x

�) and y� := fj(x
�); j 6= i.

Although not explicitly stated in the above definition, it is permissible for the
coefficient a > 0 in qi(y) to be infinite. However, we are primarily interested in
the cases for which it is possible to find a finite value of a > 0 such that the
quadratic function qi(y) supports the set Yi. Under the conditions of continuity
and differentiability, the cases which would require an infinite value of a > 0 are
extremely rare.

THEOREM 3.1. If there exists x� 2 Xenv
i and a neighborhood V of y� :=

fj(x
�); j 6= i, such that envi(y) is continuous and differentiable over V , then

there exists a scalar �a > 0 such that x� is qi-approachable for any a � �a.
Proof. Let qi(y) = �a(y� ")2� b(y� ")+ c, with a > 0; b = �2a(y�� ")�

env0

i(y
�), and c = �a(y� � ")2 � env0

i(y
�)(y� � ") + envi(y�). Then Lemma 3.1

proves that

qi(y
�) = envi(y

�); (28)

for any value of a > 0. If â > a > 0, then �2â(y � y�) > �2a(y � y�) if
y < y� and �2â(y � y�) < �2a(y � y�) if y > y�. Therefore, since q0i(y) =
�2a(y� y�)+ env0

i(y
�), increasing the value of a > 0 increases the value of q0i(y)

if y < y� and decreases the value of q0i(y) if y > y�. Thus, there exists a value
a� > 0 (possibly infinite) such that

q0i(y) � env0

i(y) for all y 2 V such that y < y�, and (29)

q0i(y) � env0

i(y) for all y 2 V such that y > y�: (30)

By Corollary 3.1, (28), (29), and (30) imply that there exists a scalar �a � a� > 0
such that qi(y) supports Yi at (y�; z�) for any value of a � �a.

THEOREM 3.2. If there existx� 2 Xenv
i and a neighborhoodV ofy� := fj(x

�); j 6=
i, such that envi(y) is continuous and twice differentiable overV with env0

i(y) finite
and env00

i (y) > �1 over V , then there exists a finite value of a� > 0 such that x�

is qi-approachable for any a � a�.
Proof. Let y be any point in V such that y 6= y�, and define

a(y) := [env0

i(y)� env0

i(y
�)]=[�2(y � y�)];

a�

< := supf1; supfa(y) : y 2 V; y < y�gg; and

a�

> := supf1; supfa(y) : y 2 V; y > y�gg:

Since env0

i(y) is finite over V , a(y) is clearly finite for all y 2 V such that y 6= y�.
In addition, since it is assumed that env00

i (y) > �1 over V , a(y) is finite for all
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y 2 V . Consequently, both a�

< and a�

> are finite. Let a� := maxfa�

<; a
�

>g and
qi(y) = �a�(y � ")2 � b(y � ") + c, with b = �2a�(y� � ") � env0

i(y
�) and

c = �a�(y� � ")2 � env0

i(y
�)(y� � ") + envi(y�). Then conditions (23), (24), and

(25) of Corollary 3.1 are satisfied with this finite scalar a�. Therefore, there exists
a finite scalar �a � a� > 0 such that qi(y) supports Yi at (y�; z�) for all a � �a.

Since Theorem 3.2 imposes stronger conditions on envi(y) than Theorem 3.1 in
order to guarantee approachability with a finite coefficient a, we will illustrate their
necessity with a small example. Consider envi(y) = �y1:5 and observe that this
function cannot be supported at y� = 0 by any quadratic function qi(y) with a
finite leading coefficient.

THEOREM 3.3. If x� 2 X is qi-approachable, then x� 2 Xenv
i .

Proof. If x� is qi-approachable, then there exists a quadratic function of the
form qi(y) = �a(y�")2� b(y�")+ c, with a > 0, which supports Yi at (y�; z�),
where z� := fi(x

�) and y� := fj(x
�); j 6= i. That is, qi(y�) = z� and qi(y) � z

for all (y; z) 2 Yi. Therefore, there does not exist x̂ 2 X such that ŷ := fj(x̂) = y�

and ẑ := fi(x̂) < z�. It follows that x� 2 Xenv
i .

THEOREM 3.4. If, for some i 2 f1; 2g, there exist x� 2 X and a neighborhood
V of y� := fj(x

�); j 6= i, such that x� is qi-approachable, envi(y) is continuous
and differentiable over V , and env0

i(y
�) < 0, then x� 2 XLPE .

Proof. If x� 2 X is qi-approachable, Theorem 3.3 proves that x� 2 Xenv
i .

Theorem 2.3, then, implies that x� 2 XLPE .

THEOREM 3.5. If, for both i = 1; 2, there exist x� 2 X and a neighborhood V
of y� := fj(x

�); j 6= i, such that x� is qi-approachable, envi(y) is continuous and
differentiable over V , and env0

i(y
�) < 0 and finite, then x� 2 XPE .

Proof. If, for both i = 1; 2; x� is qi-approachable, Theorem 3.3 proves that
x� 2 Xenv

i , and since env0

i(y
�) < 0 and finite, Corollary 2.1 proves that x� 2

XPE .

THEOREM 3.6. If, for both i = 1; 2, there exist x� 2 X and a neighborhood V
of y� := fj(x

�); j 6= i, such that envi(y) is continuous, and differentiable over V ,
and x� 2 XPE , then x� is qi-approachable for both i = 1; 2.

Proof. If x� 2 XPE , Theorem 2.2 proves that x� 2 Xenv
i for both i = 1; 2: In

turn, Theorem 3.1 proves that x� is qi-approachable for both i = 1; 2.

In this section the concepts of the lower envelope function envi(y) and its derivative
were used extensively. It was assumed throughout that envi(y) is continuous and
differentiable over some neighborhood V of y�. We point out here that in such
cases one can easily approximate env0

i(y
�) with the quantity (z�� z)=(y� � y) for

(y; z) 6= (y�; z�) in Y env
i \ V .
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The generalization of the differentiability requirement to subdifferentiability or
B-differentiability would not resolve, in many instances, the lack of approachability
at a given point. For example, envi(y) = �jyj is both subdifferentiable and B-
differentiable at y = 0, but it is qi-approachable at this point only with a quadratic
function qi(y) whose leading coefficient a is infinite. Thus, the approachability of
such points would require a degenerate quadratic support function, which in effect
would render the quadratic Lagrangian approach introduced and studied in this
paper powerless.

4. A Quadratic Lagrangian Approach

In an attempt to resolve the duality gap that exists between nonlinear single objec-
tive primal problems and their corresponding dual problem, Bazarra (1973), Gould
(1969), and Nakayama et al. (1975) examined the use of generalized Lagrangian
duality as an alternative to the classical Lagrangian dual approach. TenHuisen
(1993) and TenHuisen and Wiecek (1994) presented an extensive study of the
application of generalized Lagrangian duality to multiple objective nonlinear pro-
gramming problems.

In this section we examine the augmented Lagrange function, related to Pi("),
given by

QLi(x; a; b; ") := fi(x) + a(fj(x)� ")2 + b(fj(x)� "); (31)

where a and b are the Lagrange multipliers. Rockafellar (1974) showed that this
quadratic Lagrange function, when applied to the single objective nonlinear pro-
gramming problem with equality constraints, may eliminate a duality gap. In his
development, this function has to be modified when applied to the nonlinear pro-
gram with inequality constraints. Various augmented Lagrangians have been stud-
ied by many authors. For excellent reviews see Tind and Wolsey (1981) and Minoux
(1986).

The novelty of our approach is the application of the augmented Lagrange
function given in (31) to Pi(") even with the inequality constraint fj(x) � "
present in this nonlinear problem. Unlike Rockafellar, our goal is not eliminating
a duality gap, but rather investigating its existence and the connectedness of the
(weakly) nondominated set.

The formulation of the quadratic Lagrangian dual problem, QLDi("), corre-
sponding to (31) is given as

QLDi(") : maximize �i(a; b; ")
subject to a > 0

b free;

where

�i(a; b; ") := minfQLi(x; a; b; ") : x 2 Xg: (32)
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Solving QLDi(") is equivalent to finding the quadratic function supporting the
set Yi having the greatest intercept with the line y = ".

LEMMA 4.1. Let qi(y) = �a(y� ")2� b(y� ")+QLi(x
�; a; b; "). Then x� 2 X

minimizes QLi(x; a; b; ") over X if and only if qi(y) � z for all (y; z) 2 Yi.
Proof. x� minimizes QLi(x; a; b; ") over X if and only if QLi(x�; a; b; ") �

QLi(x; a; b; ") for all x 2 X , which is equivalent to QLi(x
�; a; b; ") � fi(x) +

a(fj(x) � ")2 + b(fj(x) � ") for all x 2 X . Letting y := fj(x) and z := fi(x),
this becomesQLi(x�; a; b; ") � z+a(y�")2 + b(y�") for all (y; z) 2 Yi. Hence
�a(y� ")2 � b(y� ") +QLi(x

�; a; b; ") � z for all (y; z) 2 Yi. Finally, applying
the definition of qi(y), we get that qi(y) � z for all (y; z) 2 Yi.

THEOREM 4.1. The point x� 2 X minimizes QLi(x; a; b; ") over X if and only
if x� is qi-approachable.

Proof. ()) Let x� minimize QLi(x; a; b; ") over X . Lemma 4.1, then, proves
that

qi(y) � z for all (y; z) 2 Yi: (33)

Now consider the quadratic function qi(y) = �a(y � ")2 � b(y � ") +
QLi(x

�; a; b; "), with a > 0. We shall show that this function qi(y) supports
the set Yi at (y�; z�), where z� := fi(x

�) and y� := fj(x
�); j 6= i.

It follows from the definition of qi(y) and QLi(x�; a; b; ") that

qi(y
�) = �a(y� � ")2 � b(y� � ") +QLi(x

�; a; b; ")

= �a(y� � ")2 � b(y� � ") + fi(x
�)

+a(fj(x
�)� ")2 + b(fj(x

�)� ")

= �a(y� � ")2 � b(y� � ") + z� + a(y� � ")2 + b(y� � ")

= z�: (34)

Inequality (33) and Equation (34) satisfy the conditions given in Definition 2.6
for the quadratic function qi(y) = �a(y � ")2 � b(y � ") + QLi(x

�; a; b; ") to
support Yi at (y�; z�). Therefore, x� is qi-approachable.

(() Since x� is qi-approachable, there exists a quadratic function of the form
qi(y) = �a(y � ")2 � b(y � ") + c, with a > 0, which supports the set Yi at
(y�; z�) := (fj(x

�); fi(x
�)). That is,

qi(y) � z for all (y; z) 2 Yi; and (35)

qi(y
�) = z�: (36)

It follows from (36) and the formulation of qi(y) that�a(y��")2�b(y��")+c =
z�. Therefore,

�a(y� � ")2 � b(y� � ") + c+QLi(x
�; a; b; ") = z� +QLi(x

�; a; b; "):

jogo401.tex; 7/08/1997; 12:42; v.5; p.13



238 MATTHEW L. TENHUISEN AND MALGORZATA M. WIECEK

Applying (31) gives

�a(y� � ")2 � b(y� � ") + c+ fi(x
�) + a(fj(x

�)� ")2 + b(fj(x
�)� ")

= z� +QLi(x
�; a; b; "):

Since z� = fi(x
�) and y� = fj(x

�); j 6= i, we get

�a(y� � ")2 � b(y� � ") + c+ z� + a(y� � ")2 + b(y� � ")

= z� +QLi(x
�; a; b; ");

which yields c = QLi(x
�; a; b; "). Therefore,

qi(y) = �a(y � ")2 � b(y � ") +QLi(x
�; a; b; "): (37)

From (35) and (37), Lemma 4.1 proves that x� minimizesQLi(x; a; b; ") overX .

The preceding theorem shows that if the point x� is qi-approachable, then it mini-
mizes QLi(x; a; b; ") over X . It also proves that minimizing the Lagrangian func-
tion QLi(x; a; b; ") with fixed values of a > 0 and b produces a qi-approachable
point. Theorem 4.2 below provides a comparison of the optimal values ofQLDi(")
and Pi(").

THEOREM 4.2. Suppose that there exists a neighborhood V of y = " such that
envi(y) is continuous and differentiable over V . If x� solves Pi(") and (a�; b�)
solves QLDi("), then fi(x�) � �i(a

�; b�; ").
Proof. Let �x 2 Xenv

i for some i 2 f1; 2g, such that fj(�x) = "; j 6= i. Theorem
3.1 proves that �x is qi-approachable. In turn, Theorem 4.1 implies that �x minimizes
QLi(x; a; b; ") over X . Then, from (32),

QLi(�x; a; b; ") = �i(a; b; "): (38)

Moreover, from (31) it follows that

QLi(�x; a; b; ") = fi(�x) + a(fj(�x)� ")2 + b(fj(�x� ")): (39)

Since fj(�x) = ", equation (39) becomes

QLi(�x; a; b; ") = fi(�x): (40)

Equations (38) and (40) imply that

�i(a; b; ") = fi(�x): (41)

Since (a�; b�) solves QLDi("),

�i(a
�; b�; ") � �i(a; b; ") for all a > 0: (42)

Since x� solves Pi("); fi(x�) � fi(x) for all x 2 X such that fj(x) � ". Since
fj(�x) = ",

fi(x
�) � fi(�x): (43)
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Combining (41), (42), and (43) completes the proof.

Theorem 4.2 proves that in general the optimal value of the primal problem Pi(")
is less than or equal to the optimal value of the dual problem QLDi("). Theorem
4.3 and Corollary 4.1 below specify optimal values of the dual problem.

THEOREM 4.3. If x� is qi-approachable and fj(x
�) = ", then �i(a

�; b�; ") =
fi(x

�), where (a�; b�) is a solution of QLDi(").
Proof. Since x� is qi-approachable, Theorem 4.1 proves that x� minimizes

QLi(x; a
�; b�; ") over X . From (32), then

QLi(x
�; a�; b�; ") = �i(a

�; b�; "): (44)

From (31) and the fact that fj(x�) = ", it follows that

QLi(x
�; a; b; ") = fi(x

�): (45)

Combining (44) and (45) completes the proof.

COROLLARY 4.1. Suppose there exists x� 2 Xenv
i and a neighborhood V of

y� := fj(x
�) = " such that envi(y) is continuous and differentiable over V . If

(a�; b�) solves QLDi("), then fi(x�) = �i(a
�; b�; ").

Proof. Since x� 2 Xenv
i , Theorem 3.1 implies that x� is qi-approachable. Since

fj(x
�) = ", Theorem 4.3 states that fi(x�) = 
i(a

�; b�; ").

5. Augmented Duality Gap

A duality gap is said to exist between the primal problem,Pi("), and its correspond-
ing dual problem formulated with the classical linear Lagrange function, LDi("),
if the optimal value of the primal problem is strictly greater than the optimal value
of the dual problem. Even though such a gap might exist, it is likely that points in
this gap are qi-approachable. It is of interest to us to examine the properties of those
qi-approachable points which lie in the duality gap. In particular, we are interest-
ed in determining whether any of these points are (weakly) efficient solutions of
BCP. In order to make this assessment, we first introduce a means of categorizing
duality gaps with Definition 5.1 and define what it means for the set YiWE to be
disconnected in Definition 5.2.

DEFINITION 5.1. A duality gap which exists between the primal problem Pi(")
and its classical dual problemLDi(") is said to be augmented if there exist x1; x2 2
Xenv
i such that fi(x1) < fi(x2) and fj(x1) < fj(x2) � "; j 6= i.

DEFINITION 5.2. The set YiWE is disconnected if there exist x1; x2 2 XWE and
�x 62 XWE such that �x 2 Xenv

i and fj(x1) < fj(�x) < fj(x2).
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The existence of an augmented duality gap and the disconnectedness of the set of
weakly nondominated solutions are closely related. In this section we explore this
relationship and how these two concepts affect the solution of QLDi(").

For ease of notation, let

xi := arg minffj(x); j 6= i : x 2 farg minffi(x) : x 2 Xggg: (46)

THEOREM 5.1. YiWE is connected if and only if there is no augmented duality
gap for any value of " � yi, where yi = fj(x

i); j 6= i, and xi is defined as in (46).
Proof. (by contradiction). ()) Assume that there exists x0 2 X such that an

augmented duality gap exists for " = y0 := fj(x0); j 6= i, with

fj(x0) � fj(x
i): (47)

Definition 5.1 states that there exist

x1; x2 2 Xenv
i (48)

such that

fj(x1) < fj(x2) � fj(x0); and (49)

fi(x1) < fi(x2); (50)

and consequently

x2 62 XWE : (51)

Furthermore, from the definition of xj in (46) it follows that

fj(x
j) � fj(x1): (52)

Also, since xi; x2 2 Xenv
i ,

fj(x
i) 6= fj(x2): (53)

By (47), (49), (52), and (53),

fj(x
j) < fj(x2) < fj(x

i): (54)

From (46), xi; xj 2 XE . Therefore, it follows from (48), (51), and (54) that YiWE

is disconnected.
(() Assume that YiWE is disconnected. Then by Definition 5.2, there exist

x1; x2 2 XWE and �x 2 Xenv
i such that

�x 62 XWE; and (55)

fj(x1) < fj(�x) < fj(x2): (56)
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Since x1 2 XWE , (55) and (56) imply that

fi(x1) < fi(�x): (57)

Let x̂ := arg minffi(x) : fj(x) = fj(x1); x 2 Xg. Then

fj(x̂) = fj(x1); (58)

fi(x̂) � fi(x1); and (59)

x̂ 2 Xenv
i : (60)

(57) and (59) imply that

fi(x̂) < fi(�x); (61)

and (56) and (58) imply that

fj(x̂) < fj(�x): (62)

Since �x 2 Xenv
i , (60), (61), and (62) imply that an augmented duality gap exists

for " = �y := fj(�x).

THEOREM 5.2. Suppose that there exists a neighborhood V of y = " such that
envi(y) is continuous and differentiable over V . If YiWE is connected, then the
optimal value of Pi(") equals the optimal value of QLDi(") for all " � yi, where
yi := fj(x

i); j 6= i, and xi is defined as in (46).
Proof. (by contradiction). Assume that there exists ~" � yi such that

fi(x
�) < �i(a

�; b�; ~"); (63)

where x� solves Pi(~"), and (a�; b�) solves QLDi(~"). Let

~x := arg minffi(x) : fj(x) = ~"; j 6= i; x 2 Xg: (64)

Then

~x 2 Xenv
i ; and (65)

fj(~x) � fj(x
i): (66)

In addition, from (31), (32) and (64) it follows that

�i(a
�; b�; ~") := minfQLi(x; a�; b�; ~") : x 2 Xg

� QLi(~x; a
�; b�; ~")

= fi(~x) + a�(fj(~x)� ~")2 + b�(fj(~x)� ~")

= fi(~x): (67)
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Inequalities (63) and (67) imply that

fi(x
�) < fi(~x): (68)

Since x� solves Pi(~"),

x� 2 XWE ; (69)

fj(x
�) � fj(~x): (70)

From (64), it cannot happen that fj(x�) = fj(~x) and fi(x�) < fi(~x). Hence, (68)
and (70) imply that

fj(x
�) < fj(~x): (71)

Inequalities (68) and (71) imply that

~x 62 XWE: (72)

However, by (46),

xi 2 XWE: (73)

From (64), (66), (72), and (73) it follows that

fj(~x) < fj(x
i): (74)

Statements (65), (69), (71), (72), (73), and (74) imply thatYiWE is disconnected.
Therefore, if YiWE is connected,

fi(x
�) � �i(a

�; b�; ") for all " � yi: (75)

However, Theorem 4.2 proves that

fi(x
�) � �i(a

�; b�; ") for all feasible ": (76)

Inequalities (75) and (76) imply that fi(x�) = �i(a
�; b�; ") for all " � yi if YiWE

is connected.

Theorems 5.1 and 5.2 result in the following corollary which provides a simple tool
for detecting the existence of an augmented duality gap and the disconnectedness
of YiWE.

COROLLARY 5.1. Let " � fj(x
i), where xi is defined as in (46). Suppose that

there exists a neighborhood V of y = " such that envi(y) is continuous and
differentiable over V . If the optimal value of Pi(") is less than the optimal value
of QLDi("), then there is an augmented duality gap for " = yi = fj(x

i).
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We now introduce a second quadratic Lagrangian dual problem which is an even
more powerful tool for determining the disconnectedness of YiWE over a certain
range of values of ".

Letx� solvePi(") and "� := fj(x
�); j 6= i. The augmented quadratic Lagrangian

dual problem, AQLDi("), is given as

AQLDi(") : maximize 	i(a; b; ")
subject to "� � �b=(2a) + " � "

a > 0
b free;

(77)

where

	i(a; b; ") := b2=(4a) + �i(a; b; "); (78)

and �i(a; b; ") is defined as in (32).
Solving AQLDi(") is equivalent to finding the quadratic function supporting

the set Yi whose vertex has the z-co-ordinate maximized and the y-co-ordinate
between the fixed scalars "� and ". When "� = ", the problemAQLDi(") is trivial.
Therefore, we are primarily interested in the cases where " is chosen such that
"� < ".

Theorem 5.3 below provides an alternate means for determining whether an
augmented duality gap exists over a range of " values. It also shows the relationship
between the optimal values of the primal problem Pi(") and the dual problem
AQLDi(") if indeed an augmented duality gap does exist.

THEOREM 5.3. Letxi be defined as in (46). Letx� solvePi(")with " � fj(x
i); j 6=

i, and (a�; b�) solve AQLDi("). If fi(x�) < 	i(a
�; b�; "), then any duality gap

which exists is augmented.
Proof. Since x� solves Pi("); fi(x�) � fi(x) for all x 2 X such that fj(x) =

fj(x
�). It follows from Definition 2.4 that

x� 2 Xenv
i : (79)

Since (a�; b�) solves AQLDi("),

"� � �b�=(2a�) + " � "; and (80)

there exists

�x 2 Xenv
i (81)

such that

fj(�x) = �b�=(2a�) + ": (82)

From (80), (82), and the definition of "�, we get that

fj(x
�) � fj(�x) � ": (83)
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If fi(x�) < 	i(a
�; b�; "), then

fi(x
�) < b�2=(4a�) + �i(a

�; b�; ") (84)

= b�2=(4a�) + minfQLi(x; a�; b�; ") : x 2 Xg (85)

� b�2=(4a�) +QLi(�x; a
�; b�; ")

= b�2=(4a�) + fi(�x) + a�(fj(�x)� ")2 + b�(fj(�x)� ") (86)

= b�2=(4a�) + fi(�x) + a�(�b�=(2a�))2 + b�(�b�=(2a�)) (87)

= fi(�x); (88)

where (84) follows from (78), (85) follows from (32), (86) follows from (31), and
(87) follows from (82).

From (81) and (88),

fj(x
�) 6= fj(�x): (89)

Inequalities (83) and (89) imply that

fj(x
�) < fj(�x) � ": (90)

Hence, if a duality gap exists, statements (79), (81), (88), and (90) show that it is
augmented.

The difference 	i(a
�; b�; ") � fi(x

�) can be considered as the depth of the aug-
mented duality gap.

Like the quadratic Lagrangian dual problem, the augmented quadratic Lagrang-
ian dual problem seeks quadratic functions which support the image set Yi. The
greatest difference between these two dual problems is the location of the point of
support relative to the set Yi. For QLDi("), the point of support (ŷ; ẑ) correspond-
ing to the optimal solution x̂ is such that ŷ = fj(x̂) = ", whereas for AQLDi(")
the point of support (�y; �z) is such that �y � ".

6. Example

This section contains an example of a nonconvex bicriteria programming problem
which demonstrates some of the results of Sections 4 and 5. Consider the problem

BCP : minimize fx3 � 9x2 + 26x� 22; 2� xg
subject to 1 � x � 5:

In the outcome space, env1(y) = �y3 � 3y2 � 2y + 2 with �3 � y � 1. The
set of outcomes Y1 for this problem is shown in Figure 1 with the nondominated
set highlighted. It can be easily seen that Y1E (and also Y1WE) is disconnected.
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Figure 1. The set of outcomes and the nondominated set.

The "-constraint problem formulated by retaining the function f1(x) = x3 �
9x2+26x�22 as the objective function and transforming the function f2(x) = 2�x
into a constraint is

P1(") : minimize x3 � 9x2 + 26x� 22
subject to 2� x � "

1 � x � 5:

It can be shown that a duality gap exists between the problem P1(") and the
corresponding dual problem LD1(") for any value of " such that �2 < " < 1.
For example, with " = 0, the optimal value of P1(0) is (18 � 2

p
3)=9, which

corresponds to an optimal solution of x� = (9 +
p

3)=3, and the optimal value
of the dual problem is �2. Note also that alternate optimal solutions exist in the
outcome space for P1(") with " = (2

p
3� 3)=3. This is all depicted in Figure 2.

Moreover, for any value of " such that (�3�
p

3)=3 < " < 1, the duality gap
is augmented. Again, consider " = 0. For x1 = (9+

p
3)=3 and x2 = (9�

p
3)=3

we get f1(x1) = (18� 2
p

3)=9, f1(x2) = (18+ 2
p

3)=9, f2(x1) = (�3�
p

3)=3,
and f2(x2) = (�3 +

p
3)=3. This augmented gap can also be seen in Figure 2.

Together, Figures 1 and 2 provide a visual representation of Theorem 5.1.
Now consider QLD1("). For any value of " such that (�3 �

p
3)=3 < " <

(2
p

3 � 3)=3, the optimal value of QLD1(") is greater than the optimal value
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Figure 2. The augmented duality gap.

of P1("). For example, with " = 0 the optimal value of QLD1(0) is 2 (with
a� � 4; b� = 2, and c� = 2), which is greater than the optimal value of P1(0)
given in the preceding paragraph. In contrast to P1("), note that QLD1(") delivers
a unique optimal solution in the outcome space with " = (2

p
3 � 3)=3. These

results relate to Theorem 4.2, Theorem 5.2, and Corollary 5.1, and are depicted in
Figure 3.

Finally consider AQLD1("). For any value of " such that (�3 �
p

3)=3 <
" < (2

p
3 � 3)=3, the optimal value of AQLD1(") is greater than the optimal

value of P1("). Again, consider " = 0. Then "� = (�3�
p

3)=3, and the optimal
value of AQLD1(0) is (18 + 2

p
3)=9 (with a� = 4; b� = (24 � 8

p
3)=3, and

c� = (�30 + 26
p

3)=9), which again, is greater than the optimal value of P1(0)
given above. This result is related to Theorem 5.3, and is depicted in Figure 4.

In order to summarize the effectiveness of each of the problemsP1("),QLD1("),
and AQLD1(") for this example, consider the following subdivision of the inter-
val [�3; 1] into four separate ranges. Let R1 := [�3; (�3 �

p
3)=3], R2 :=

((�3 �
p

3)=3; (�3 +
p

3)=3], R3 := ((�3 +
p

3)=3; (2
p

3 � 3)=3], and R4 :=
((2
p

3� 3)=3; 1].
For each value of " 2 (R1 [ R4); P1(") will generate an optimal solution x�

such that f2(x
�) = ", and the value of envi(y)jy=" is found. However, for all values

of " 2 (R2 [R3), except possibly (2
p

3� 3)=3, P1(") will generate a solution x�
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Figure 3. The optimal solution of QLD1(0).

such that f2(x
�) = (�3 �

p
3)=3. Therefore, for this example, P1(") gives very

limited information about the behavior of env1(y) over (R2 [R3) and is unable to
generate solutions whose images are in this interval.

Although it is a more difficult problem to solve,QLD1(")will generate the same
optimal solution as P1("), denoted now by x̂, for each value of " 2 (R1 [R4), and
thus, f2(x̂) = ". Moreover, for each value of " 2 (R2 [ R3), QLD1(") will still
generate an optimal solution x̂ such that f2(x̂) = ".QLD1(") eliminates ambiguity
related to alternate optimal solutions, enables us to find the value of env1(y) for
all feasible values of y = f2(x), and can generate all solutions, even those in the
gap. From this information it is easy to determine whether an augmented duality
gap exists and if the set of weakly nondominated solutions is disconnected.

For AQLD1("), the most interesting results of this example are for " 2 R3.
For any value of " 2 int(R3), AQLD1(") will generate a solution �x such that
f2(�x) = (�3 +

p
3)=3, for a > 0 sufficiently large. In accordance with Definition

5.1 or Theorem 5.3, the values f1(x
�); f1(�x); f2(x

�), and f2(�x), where x� solves
P1(") and �x solves AQLD1("), are evidence of an augmented duality gap and the
disconnectedness of YiWE . Hence, for this entire range of values of ", the optimal
value of AQLD1(") remains fixed and delivers information about the depth of the
augmented gap.
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Figure 4. The optimal solution of AQLD1(0).

7. Conclusions

This paper is a continuation of the research done on applying generalized Lagrangian
duality to multiple objective programming and presents a methodology specially
tailored for bicriteria nonconvex programs. Selecting a specific form of the gen-
eralized Lagrange function leads to the concept of qi-approachability and the
development of two quadratic Lagrangian dual problems.

The concept of the lower envelope function is employed since the informa-
tion about local values of this function (and its derivative) comes from solving
a related single objective program. The lower envelope function helps relate qi-
approachability to efficiency.

Extensive consideration is given to the theoretical relationships between the
two quadratic dual problems and efficient solutions. These problems also provide
a means of determining whether or not the set of weakly nondominated solutions
is connected. The structure of this set motivates the introduction of the concept
of an augmented duality gap. Existence of the gap, defined as being related to
disconnectedness of the set of weakly nondominated solutions, can be detected
locally at a given point or over a certain range. The enclosed example illustrates
both cases.
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The results presented in this paper can be extended in several directions. First,
they can be generalized for the multiple objective case, which would require many
modifications due to the multidimensionality of the image space. Also, certain
concepts, like envi(y), would have to be redefined. Second, the means of detecting
the augmented duality gap could be applied to single objective programs in order
to better explore the lack of convexity in general. Finally, one may develop other
nonlinear Lagrange functions and examine their capability of dealing with multiple
objective programs.

The authors believe that research on multiple objective programming and gen-
eralized Lagrangian duality deserves further studies since both fields can benefit
substantially from each other.
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